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Abstract

Developing games can be improved with Procedural Content Generation (PCG),
the automatic creation of game contents, such as levels, music, and vegetation.
However, few researches have addressed the impacts of PCG on players, espe-
cially in terms of games with educational ends. Hence, this understanding is a
research area that demands further studies. To expand on this gap, this arti-
cle presents a study concerning whether PCG for level creation impacts play-
ers’ in-game behavior, based on interactions with a digital math game. This
game features two versions that contain a unique difference: whilst one features
human-designed levels, these are procedurally generated on the other version.
To compare them, PCG’s impact on players’ in-game behavior was measured
through the total played time, number of played levels, and number of retained
players. In this context, the findings demonstrated a significant difference in
the number of retained players, which was higher for the PCG version in com-
parison to the other. In contrast, the other two metrics were insignificantly
different between versions. Therefore, game designers and developers can ex-
ploit these findings to employ PCG in games, taking advantage of its impacts on
development and players, knowing how it is expected to affect players’ in-game
behavior.

Keywords: Procedural Content Generation, Player Engagement, Player
Retention, A/B test, Digital Math Game, Educational Game

1. Introduction

A reliable approach to improve games is to use Procedural Content Genera-
tion (PCG) [1], that can be defined as the algorithmic generation of any content
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[2]. However, it is mostly applied on games, such as levels [3, 4], music [5, 6],
vegetation [7], buildings [8, 9], race tracks [10], history [11], and puzzles [12, 13],
for instance. A complete review of examples can be found in Hendrikx et al.
[14], where the authors provide a survey on game contents that can be procedu-
rally generated, along to methods for generating them. In sum, by enabling the
automatic creation of a wide range of contents, PCG is an important technique
for developing games.

However, PCG’s contributions to games go beyond improving the develop-
ment process, being valuable to players as well. Developing a game is a complex
task which commonly requires human effort, time, money, and a multidisci-
plinary team working together [15, 14]. Creating games’ parts through algo-
rithms can improve this process and remedy these problems [1]. Furthermore,
players expect technologies to provide them with positive experiences; other-
wise, they are unlikely to accept or interact with those [16]. Considering this
context, a game with a limited number of contents might fail to promote those
experiences. Consequently, players might lose interest and left the game. Algo-
rithms for automatic generation of content also contributes to this vein, being
capable of providing players with a pseudo-infinite number of game contents.
Thereby, using PCG can contribute to games, not only on their development
process, but also to the experience they provide to players.

Nevertheless, identifying the impact of PCG techniques according to players
is yet an emerging field of research [17]. To this end, Korn et al. [18] argue
that evaluating a single game, with versus without PCG, is the most feasible
approach. Additionally, the authors confirm that this is a scantly explored
perspective which requires more researches. Based on this context, this arti-
cle tackles this gap, presenting an empirical study concerning the impacts of
Procedural Level Generation (PLG) on players’ behavior. Moreover, although
PCG’s main application is in games [14], there are little researches in terms
of educational games that feature algorithms for automatic content generation
[19]. Therefore, this study adopted a Digital Math Game (DMG) as its testbed,
which is a specific type of educational game.

Hereby, this article’s main contribution is to demonstrate the PLG’s impact
on the behavior of a DMG’s players. Consequently, this research’s scientific im-
pact is to provide evidence of whether using an algorithm for PLG leads players
to behave differently from players who interacted with human-designed levels.
Our proposition is that players from both situations will behave indifferently,
which is relevant because our experiment is based on a simple and straight-
forward PLG method that does not produce personalized outputs. Thus, devel-
opers and designers can rely on this paper’s findings when creating their games.
They can take advantage of PCG’s benefits for development-time, knowing that
it will not affect players’ behavior, despite using a simple algorithm.

Lastly, in order to outline this research article, the remaining of this paper
is following presented. Section 2 provides a background on PCG and Section 3
reviews related works on the impacts of procedurally generated contents. Sec-
tions 4 and 5 describe this study’s testbed game and experiment, respectively.
Section 6 shows the experiment’s results, Section 7 discusses its findings, and,
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lastly, Section 8 draws this article’s final considerations.

2. Procedural Content Generation

This section presents a background on PCG in three perspectives: con-
tents, algorithms classifications, and procedurally generated outputs evaluation.
Mainly, the aim is to show what a specific type of content is consisted of, differ-
ent forms of using and automatically generating contents, and ways to evaluate
procedurally created outputs. At last, a summary of these is presented towards
the motivation behind selecting one option or another.

Hendrikx et al. [14] surveyed several papers reporting the use of PCG al-
gorithms to classify game contents that might be procedurally generated, as
well as to provide what methods were used to create them. Six game con-
tent classes were defined, which are bits, space, systems, scenarios, design, and
derived contents. This paper investigates the procedural generation of levels,
which fits in the fourth class. Levels are present in basically all games, they
are one of the most studied contents on PCG’s context, and nearly all games
can benefit from them, according to the authors. Additionally, they claim that,
following the presented order, contents from the latest classes can be generated
from contents of the previous ones. Accordingly, it helps to understand what is
a level (game scenario). It is a content, composed of a game space, which is ful-
filled with game elements. For instance, an adventure game’s level might be an
empty map (space) containing several game elements (bits), such as buildings,
walls, enemies, and a character. In summary, there are six classes of contents
that might be procedurally generated, wherein most of these are composed of
simpler ones.

Regardless of what type of content will be generated, there are different char-
acteristics the generation algorithm might feature. Togelius et al. [20] presented
a taxonomy of search-based generators, distinguishing them through opposed
characteristics. Of high relevance to this article, there are the differences be-
tween online and offline systems, as well as constructive and generate-and-test
algorithms. A system that uses PCG to create contents while the application
is running is considered an online system; otherwise, it is considered an offline
system. Online generation allows providing endless gameplays, or even endless
game levels, for example. However, it often demands predictable running time
and quality. In contrast, offline generation is often used to aid developers in
creativity. One example is the Mixed-Initiative approach, wherein the designer
is helped by the generation system [21]. In this case, the demands of the online
generation are mostly absent since there is a human in the loop, which is able
to evaluate the content’s quality. Also, running time is less critical, although it
is still important in some situations.

Moreover, the difference between constructive and generate-and-test algo-
rithms is that the former creates its outputs in a single step, whereas the later
generates and tests multiples results until satisfying a predefined criterion. Con-
structive algorithms usually run faster but have to feature generation rules that
guarantee the feasibility of its generated contents. For instance, it must have
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a rule that connects a race track’s begin and end if players’ goal is to perform
two or more laps. Differently, generate-and-test methods are usually compu-
tationally more expensive but can achieve more complex results by optimizing
its outcomes toward passing the desired test function (e.g. content’s quality or
difficulty). Hence, its design guarantees contents’ feasibility naturally. Thereby,
according to the presented possibilities, selecting how the system’s use of PCG
operates mainly depends on the goal of using it, while the algorithm’s type plays
a role on the outputs’ quality and computational performance.

Once the algorithm is completely set up, evaluating it is important for both
academic and commercial ends. Basically, there are three options that might be
adopted to analyze the use of PCG, depending on the evaluation’s goals. One of
them is to assess the algorithm’s capacities, which probably is the most common
approach (e.g. [22, 23, 3]). This procedure is often performed through the
analysis of contents’ expressivity [24]. A large number of outputs are generated
and, according to the evaluator’s selected metrics (e.g. variety), they are visually
analyzed. While the former procedure is interesting, it is insufficient to replace
user studies [25], which is the second option. Studying players’ interaction with
the algorithmically generated contents captures another perspective. It allows
to identify their opinions through self-reports or to capture their reactions while
playing them [26]. The first option is known as Top-down approach, whilst the
second is known as Bottom-up [27]. However, neither of them can measure the
impact of using PCG on players by itself. To this end, the third option is the
most recommended, which expands from the Bottom-up approach: performing
an A/B test [18]. This is a scantly used perspective [17], wherein one game,
which contains two versions that only differ by using PCG or not, is evaluated
according to players (e.g. opinions or behavior). Therefore, whereas analyzing
generators through their expressivity is the most used approach, the impact of
using procedurally generated content lacks further researches.

In sum, game contents might be distinguished through six classes, where con-
tents of one are used to build up contents of another. In order to automatically
generate these, algorithms might be used in running-time to provide endless
experiences or on development-time to aid designers and developers. Generated
outputs might be evaluated from players’ opinions, behavior, or other reactions,
as well as through comparisons with contents created by specialists; whereas
generators might be analyzed according to the expressive range of their con-
tents. Hence, selecting the generator’s characteristics and evaluation method
depends on what is intended, whilst creating a specific game content relies on
contents of simpler classes.

3. Related Works

This section surveys previous studies of PCG’s impact on players. To this
end, evaluating the same game with and without PCG (A/B test) is the most
feasible approach [18]. Therefore, this section presents researches that per-
formed this test and, in addition, used player-related data (e.g. opinion or
behavior) as evaluation metrics. To the best of the authors’ knowledge, Butler
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et al. [28] was the first work to meet the aforementioned criterion. Thereafter,
two other similar researches that meet those criteria were found [18, 17]. How-
ever, these latter studies evaluated PCG’s impact based on players’ opinions,
whereas the former analyzed players’ in-game behavior. Following, this section
further reviews them.

Butler et al. [28] used the DMG Refraction as the testbed for their proposed
algorithm for game progression, comparing it to the originally human-designed
progression. Their data collection procedure relied on the testbed game being
available online. Players played on one game version or another (i.e. originally
designed or procedurally designed) through the browser. Then, based on in-
game data, the authors evaluated the impact of their proposed approach on
players’ behavior. The behavioral metrics used were (i) the number of played
seconds and (ii) the number of played levels. Comparing metrics of both ver-
sions, they found an insignificant difference on the first and a small significant
difference on the second. Although the significant difference in the number of
played levels, the automatically designed version was played 92% as much as
the human-designed. Thereby, showcasing the feasibility of their approach and
that it had a small impact on one behavioral metric and no impact on the other.

Connor et al. [17] used an abstract game as the testbed to evaluate a PLG
algorithm’s impact, which was compared to human-generated levels. The au-
thors performed a controlled experiment to collect players’ feedback. Players
were assigned to one version or another (i.e. procedurally generated or human-
generated) and, after playing it, responded to a game immersion questionnaire
composed of 30 items. According to players’ self-reported immersion, the au-
thors compared whether the PCG version impacted their experiences. The ex-
periment’s findings showed a significant difference, where the human-generated
version led to a higher total immersion. However, with further analyses on each
item separately, the authors found significant differences in only five out of the
30 items. Therefore, providing empirical evidence that PLG impacted players’
self-reported total immersion, which emerged from significant differences on less
than 17% of the questionnaire’s items.

Korn et al. [18] used the tactical strategy game Conquest of the Seven Seas
to evaluate the procedural generation of reefs. These were compared to reefs
created by artists according to players’ feedback. Feedback was collected on
a controlled experiment, wherein participants played both versions on a ran-
domized order. PCG’s impact was then analyzed based on players’ opinions
of reefs visual aspects and preference for one version or another. The results
showed that the procedurally generated reefs were considered significantly more
realistic, aesthetically pleasing, and preferred in comparison to the artist cre-
ated. Also, it was found that players with 45 years or more were the ones
who appreciated the automatically generated contents the most. Hence, this
research presented empirical evidence that PCG can promote experiences that
overcome the experiences provided by artist-designed reefs and, additionally,
demonstrated that older players prefer procedurally generated reefs more than
younger players.

In order to sum up the key aspects of the reviewed researches, along with
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aspects of the experiment presented in this paper, Table 1 was designed. For
all of these studies, it demonstrates the year of publication, generated content,
sample’s age range and size (N), evaluation metric, and analysis design. A
two-sample design refers to the cases wherein players interacted with one game
version or another; while one-sample refers to the case wherein players interacted
with both versions.

Table 1: Comparison of researches on PCG’s impact.

Aspect Butler et al. Connor et al. Korn et al. This
Year 2015 2017 2017 ?
Content Progression Levels Reefs Levels
Age-sample ? 18-35 18-≈45 7-72
N-sample 2377 16 41 724
Metric in-game be-

havior
game immer-
sion

aesthetics;
preference

in-game be-
havior

Design two-sample two-sample one-sample two-sample
? = data not available.

As can be seen in Table 1, the latest studies analyzed PCG’s impact ac-
cording to players’ self-reported feedback through questionnaires. Also, these
analyses were based on controlled experiments with modest samples’ size (≤
41). Additionally, the table shows that Connor et al. [17] is the only published
research that actually evaluated the generation of levels itself. Although Butler
et al. [28] also used procedurally generated levels, the authors’ main focus was
on their game progression system’s impact. Another fact is that PCG’s impact
was evaluated by adult players only, considering that the participants of these
samples were all over 18 years. Notice that, despite Refraction was hosted on
a platform of games for children, Butler et al. [28] did not provide the sample’s
age. Consequently, there is no evidence of their samples’ age neither that they
share similar characteristics. Analyzing samples with similar characteristics is
important on two-sample designed studies, which was adopted on two out of
three researches, because failing to meet this criterion might bias the analysis.
Once these exist, there are two differences in the analysis: (i) participants’ char-
acteristics and (ii) whether the game version uses PCG. Therefore, this might
represent a threat to analysis validity.

Based on the aforementioned context, this article expands the literature on
four main aspects. Firstly, recent researches have focused on analyses based
on players’ opinions. This paper tackled a problem alike to theirs, however,
it adopted players’ in-game behavior as evaluation metrics as these are sel-
dom recently. Nevertheless, we acknowledge that evaluating measures of both
players’ opinions and behaviors, in a complementary way, would provide more
thoughtful contributions and that not providing this combination is a limita-
tion of this article’s scope. Secondly, the only study using this metric type was
mainly concerned with a game progression design system. Differently, this pa-
per’s experiment was mainly concerned with a level generation system. Thirdly,

6



analyses of PCG’s impact did not involve children and teenage players, which
was addressed in this research by having a sample composed of players with
ages from seven to over 70 years. Lastly, no concerns were provided regarding
whether there exist significant differences in samples’ characteristics in previous
studies. This article presents empirical analyses that addressed this lack.

4. Testbed Game

To perform this article’s experiment, it was used as testbed the DMG Space-
Math2. This game requires players to solve basic math operations to advance
from one level to another. Each level is represented by a universe where players
control an astronaut. This astronaut must explore levels, using a teleport de-
vice to find out what is hidden below level’s elements. Most level’s elements are
boxes, which might hide aliens (i.e. enemies), numbers, or nothing. While aliens
are intended to difficult level’s exploration, numbers are the elements that must
be collected to solve the math puzzle of each level. These puzzles are the arith-
metic operations (e.g. summations and subtraction) that are the key to progress
in the game. However, simply collecting the numbers is not enough. The order
these numbers are collected must form the exact puzzle’s solution. For instance,
collecting the number one and then number two if the right answer is 12. As can
be noted, collected numbers are concatenated, forming the astronaut’s answer
to the level’s puzzle. Additionally, boxes might have different colors until play-
ers achieving a 10-wins-streak to help them in collecting numbers. These colors
guide players toward the right order of numbers selection, which can improve
their in-game performance by aiding on puzzles’ resolution. Finally, once the
avatar is led to the portal, which appears once that any number is collected,
another parallel universe (i.e. game level) is presented and the game continues
if the puzzle’s answer is correct, or restart if it is wrong. Figure 1 presents two
screenshots of the game, showing the same level at two different stages.

More specifically, the main pedagogical objective of the testbed game is re-
lated to mathematical arithmetic operations, namely: summation, subtraction,
multiplication, and division. The goal is to encourage players to practice their
arithmetic skills as much as possible while playing the game. To achieve this
goal, the arithmetic operations are inserted into the game world as puzzles that
must be solved in order to win each level and, consequently, advance to the next
one, as well as to accumulate more points. Hence, players need to put efforts
in correctly solving the puzzles, otherwise, they will not win any and, therefore,
yield poor performances. For instance, in the level presented in Figure 1, the
arithmetic problem players must solve is 20 divided by five, which the answer
is four. As this puzzle’s solution has a single number (4), the player just has to
find the number, collect it (pass under the number with the avatar), and then
it would be possible to win the level. However, if the player was not aware that
the answer has a single number, s/he would, possibly, unnecessarily search for a

2spacemath.rpbtecnologia.com.br
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(a) (b)

Figure 1: SpaceMath’s screeshots. Figure a shows a level as generated and Figure b show-
cases the same level after the player used the teleport device to teleport two boxes (top-center
and bottom-right) to another parallel universe, finding an alien and the problem’s solution,
respectively.

second number. Similarly, in a level that the arithmetic puzzle is, e.g. 3 times
4, if the player wrongly processes the operation, s/he could find the number
one, think it is the right answer (confounding multiplication with subtraction,
e.g. by lack of attention), and lose the level when trying to advance. In the
same way, the player could collect both the numbers two and one, forming the
answer 21, and also lose the level, whereas the player should collect first the
number one, then the number 2 in order to formulate the right answer (12).
Thus, despite the game aids in the puzzle’s resolution process, the pedagogical
goal is accomplished by making players mentally solve arithmetic operations to
prevent from losing.

Moreover, given the game’s context, players are always led to other parallel
universes that, similarly, require them to solve new puzzles. Thereby, as long as
the game is being played, its players are repeatedly practicing their math skills.
This repetition is a pedagogical aspect that is valuable to players because it
helps them to practice the mental resolution of arithmetic problems [29, 30],
which is similar to homework but in a ludic way. For example, when a new sub-
ject is introduced (e.g. multiplication), it is common to ask the students to solve
a set of multiplication problems in order to fix the learning. The pedagogical
approach of SpaceMath is similar to that: it makes players solve many arith-
metic problems in terms of the four basic math operations but, differently from
a common homework, it does that in a ludic fashion. Therefore, it is expected
to encourage players to practice their math skills in an entertaining way. Fur-
thermore, as the math puzzles are automatically generated, the game provides
a pseudo-infinite number of those for players to practice. Thus, besides allow-
ing them to practice math in a ludic fashion, it provides a substantially large
number of problems to do so. Nevertheless, describing the puzzles’ automatic
generation is not the scope of this paper.

Additionally, we highlight that every time some level is finished, regardless
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of the player winning or losing, a new parallel universe is presented. Thereby,
SpaceMath promotes endless gameplay, which means players will never face a last
level. To yield this feature, PCG is necessary, once it can automatically create
a pseudo-infinite number of those (as well as for the math puzzles). Otherwise,
developers and designers would have to create thousands of levels, making this
feature unfeasible. Therefore, the importance of exploiting PCG algorithms for
games with this characteristic. Nevertheless, there exists a trade-off on this ap-
proach. On one side, humans can create a limited number of contents using their
specialist knowledge and creativity. On the other side, computers rely on pre-
defined algorithms that might be limited in outputs quality but promote several
contents with less manpower. Hence, using PCG is important for games to de-
liver endless gameplay, whilst the trade-off between development improvement
and content’s quality must be considered. Hereby, the importance of comparing
contents created from both ways to understand how the experience they provide
differs according to players.

4.1. Static Version

This version contains 20 levels that were manually designed by a game de-
veloper. He is graduated in Technology in Digital Games and had three years of
experience in the field at the time of designing them. During the gameplay, the
order in which these levels are presented for players increases the quantity of
elements in them based on the sequence of wins players have at that point. The
aim is to raise their difficulty accordingly. Thus, the first levels will contain few
elements and the last ones (the twentieth is the last one) will contain several.
In this context, levels’ difficulty progression respects the following specifica-
tions. At first, levels have few boxes with no aliens hidden beneath any of them.
Then, after each win, the quantity of boxes is increased and harmful elements,
which are boxes hiding aliens, progressively begin to exist. Thereafter, levels
will present boxes that are actually necessary only if the puzzle’s answer was
bigger than 99, seeking to lure players towards wasting their devices’ charges
and difficult their path.

Furthermore, another characteristic of this version is that when players lose
after reaching a three-wins-streak, or in any other streak less than 20, they will
have to replay the three levels they just played again. This characteristic is
present in most games with a limited number of levels (or any other content)
available. However, when players reach a 20-wins-streak, they are redirected to
the dynamic version to guarantee the endless gameplay feature of SpaceMath.
Also, after achieving this point, the player will always play in the dynamic
version from the next login. Summarizing, this version provides predefined
levels, designed by a human developer, which presents a progressive increase
of difficulty as players achieve higher sequences of wins. Due to the limited
number of contents, players might play repeated levels and, in order to maintain
the testbed game’s endless gameplay, players that reach a 20-wins-streak are
transferred to the dynamic version. Despite that, for data analysis, those that
started playing on the static were always considered as Control group’s players,
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regardless of being transferred to the dynamic version or not in order to maintain
the experiment’s consistency.

4.2. Dynamic Version

In this version, players interact with levels automatically created. A con-
structive method of PCG was adopted to this end, which was inspired on previ-
ous similar implementations [31, 32]. This method operates in a generic fashion,
which means that levels are generated independently of players’ types, charac-
teristics, and personalities. Also, it runs online, enabling the endless gameplay
characteristic. Its implementation’s description might be presented as follows.
Firstly, it creates a tilemap (grid-like) representation for the level under gener-
ation. Secondly, it positions the level’s avatar (astronaut) at its fixed position
(left-bottom). Thirdly, numbered elements are placed at selected positions of
the tilemap. These elements might be single boxes and/or rectangular clusters
of boxes (blocks). Fourthly, harmful elements are positioned as well, which are
those that might spawn one or two aliens. Fifthly, the procedure places empty
elements. Thus, constructing levels in a straight-forward procedure, through a
specific sequence of steps that run independently of players. Figure 2 demon-
strates the step-by-step of this process for the game’s screenshot presented in
Figure 1.

Figure 2: Step-by-step level generation.

Because Figure 2 shows the level’s final design, the tilemap representation
is invisible. At the second step, the level is incremented, compared to step one,
by featuring the avatar. At step three, the numbered element, a single box
hiding the number for in this level’s case, is inserted. Subsequently, the level’s
single harmful element (single box), which is hiding an alien, is added in step
four. Lastly, step five increments the level by adding a block of empty boxes.
Note that the portal used to teleport the astronaut from one level to another
was not mentioned. The reason is that this generation process runs before
the gameplay’s beginning, whereas the portal is created during it. Therefore,
its positioning is executed as a separated step. Following, we provide further

10



insights into how the generation of levels happens, expanding on the overview
already mentioned. To illustrate this method, Figure 3 showcases a high-level
flow diagram of the process. It presents the five steps presented on the step-by-
step generation of Figure 2 and, in addition, it shows the sub-steps performed in
each of those. For all steps that create some content but step number two, where
all elements will be at is selected similarly, which is: choosing tilemap’s available
positions at random. This approach aims at increasing the algorithm’s outputs
variation, inserting a degree of randomness on every generated level. However,
it is necessary to design the algorithm in a way that no output fails to meet
the developers’ intends or testbed game’s characteristics. Thereby, this method
features a set of predefined rules that guarantee the feasibility of each level, in
terms of both the math puzzle’s resolution and difficulty progress. These rules
are following described, relating each rule to the algorithm’s step in which it is
executed.

Figure 3: Flow diagram of the level generation method.

The feasibility of a testbed’s level is achieved through both the existence
of the numbers required to solve the math puzzle and the progressive increase
in the quantity of elements inside it according to players’ win-streak. From
one perspective, if a puzzle’s answer is 15, for example, the level must feature
two numbered boxes hiding both the numbers one and five. To do so, the level
generation is aware of the puzzle’s answer and creates exactly one game element
for each one of its numbers (steps 3.1). That is possible because the math
puzzle will feature a level, as well as its solution, are available before the level’s
generation process start. Hence, the solution can be passed as an input to the
level generation algorithm (see step 1), which uses it to determine (i) the exact
amount of numbered elements that must be created (steps 3.2 and 3.3) and (ii)
which number (or set of numbers) will be hidden below each numbered element.
Hereby, while generating a level, the existence of its math puzzle’s solution is
guaranteed, avoiding the necessity of verifying whether the solution exists after
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the procedure’s execution. From the other perspective, it is necessary that
the number of elements inside levels increases progressively as players achieve
higher win-sequences. To this end, the method is also aware of players’ win-
sequences (input on step 1), which allows it to determine how many elements
will be inserted in its outputs (throughout steps 4 and 5). Additionally, there
are specific questions of the generation process that aid the generated results
for both aforementioned perspectives.

From math puzzles’ perspective, there is another important fact to improve
levels’ challenging and variety. To avoid numbers being always in single boxes
or in blocks of boxes, randomness is employed (step 3.1). It is used to determine
whether all numbers will be beneath single boxes, blocks of boxes, or in both
(e.g. one number in each type or two numbers in one and one number in
another). Consequently, preventing players from looking for numbers on only
one element type or another, which improves the generated outputs’ challenging
level. Moreover, in blocks’ cases, randomness is also used to determine their sizes
as well as in which block’s box the number will be hidden. A block with size
two has two rows and two columns (total of four boxes), whilst a block with
size three has three rows and three columns (total of nine boxes; see Figure
1). However, they can end up being smaller than the expected, if some box’s
position is occupied by a previously generated element or if its position falls
outside levels boundary. Even though, blocks offer options of where the number
can be placed. Thereby, using randomness enhances levels’ variety by making
where the numbers will be at less predictable, both in terms of which element
type is hiding them and in which block’s position the number is at, besides
inserting variation on blocks’ size.

From levels’ difficulty perspective, there are other specificities that play an
important role in the contents’ variety as well. The quantity of not numbered
elements respects players’ performance, however, randomness also affects this
aspect (steps 4 and 5). It is used as a way to enhance levels’ variation, affecting
the quantity of elements available on levels, as well as affecting both blocks’
size and harmfulness. Despite the quantity of harmful elements increases as
players achieve higher win- streak, this increase is not fixed (step 4.2). Due to
the randomness use, it is possible that 10 of those elements are available at the
fifth level in one time, and that 12 of them are available when the player reaches
that fifth level once again. Similarly, the size of blocks will respect wins-streak,
although they will vary as well, given the use of randomness. In addition, blocks’
harmfulness (i.e. the number of aliens hidden within a block) also benefits from
it. Hence, the use of randomness yields blocks with varied harmfulness, in spite
of always increasing according to the sequence of wins players have.

Furthermore, there are specific generation restrictions that were designed in
order to aid players. One of them is that the avatar’s neighbors positions are ex-
cluded from the tilemap. The goal of this restriction is to prevent the astronaut
from beginning the level stuck in the corner, giving some space for the player
to perform an initial exploration. Another restriction is that harmful elements
only begin to appear from the four-wins-streak (step 4), aiming to facilitate
players advancing the first levels and preparing themselves to the subsequent
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ones. Also, it makes them practicing the math operations even if they are be-
ginner players and have difficulty to win levels with harmful elements. Lastly,
we highlight that, if there are harmful boxes in the level, each one will spawn a
single alien, on its own position, once it is teleported out of the level. However,
as players’ wins-streak increases, there is a chance for each one of those boxes to
spawn a second alien, on a random position, increasing the levels’ challenging
and variety.

In sum, this version provides the game with several computer-generated lev-
els which are created following a specific sequence of steps and highly relies on
randomness to improve its outputs’ variation. The generation method design
manages to guarantee that levels will always contain the math puzzle’s solution
(step 3), while also increasing the outputs’ difficulty, according to players’ per-
formance, through placing more boxes that hide aliens (step 4) as well as empty
ones (step 5). At the same time, it uses random selections to avoid levels always
having the same amount of elements, with the same size each, seeking to make
them less predictable and more innovative. Therefore, being able to create a
large number of varied outputs that respects the game’s and designer’s intents.

5. Experiment

Identifying PLG’s impact on players’ behavior was the goal of this experi-
ment. It was performed according to an A/B test, which is recommended in the
literature to evaluate PCG algorithms’ impact [18]. This test requires a game
with two versions differing in a single aspect. In this case, the single difference
between versions must be whether they use PLG or not. Hence, the studied
game versions were named as dynamic, which features the PLG algorithm, and
static, which features human-generated levels. In addition, this experiment used
an adaptation of the two-sample design. This design itself implies that a player
plays in a single version only, leading to two samples. Thereby, the samples
consisting of players from the dynamic and the static version were named In-
tervention and Control groups, respectively.

However, guaranteeing that players will interact with only one version is
hampered due to the limited number of human-designed levels plus the game’s
feature of providing endless gameplay. Players from the Control group might
achieve a 20-wins-streak and, to maintain the game’s endless characteristic, in
this case, they begin to play on procedurally generated levels after this point.
Hereby, while participants from the Intervention group only played on the dy-
namic version, participants from the Control group that achieved a 20-wins-
streak ended up playing on both versions, despite playing at least 20 levels on
the static version. Thus, the rationale of arguing that an adapted two-sample
design was used. Regardless, this approach enabled the comparison of players’
behavior from each group to identify PLG’s impact. As result, this experi-
ment’s hypothesis was: The behavior of players that started playing on
the static version is indifferent from the behavior of the ones that
played only on the dynamic version.
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Therefore, differences in players’ behavior suggest that PLG impacted their
behavior since it is expected to be the only distinction between groups. We
highlight that, although PCG can be used to create personalized contents, aim-
ing at driving or improving players’ experience [26], the algorithm analyzed in
this experiment is generic, besides simple and straight-forward. Consequently,
it is interesting for a game featuring it to lead players to behave in the same
way they behave on specialist-generated contents, besides being feasible for on-
line use due to its fast running-time. Lastly, to accomplish this experiment, all
statistical tests and analyses were performed on R [33].

5.1. Participants

Players often have distinct characteristics, personalities, and types, and,
thus, behave differently according to them [34, 35, 36]. Thereby, due to the
two-sample design, another distinction on the A/B test might emerge: players
from different samples having distinct characteristics. For instance, the Inter-
vention group might be composed of players older than the players from the
Control group. Consequently, this age difference might bias the experiment’s
results. In this case, it is possible to emerge a difference in players’ behavior
due to groups’ age difference rather than due to the different game versions they
played. To mitigate this threat, it is expected for both groups to share similar
characteristics. Therefore, we compared demographic data from players of both
groups aiming to provide evidence that the aforementioned threat was remedied
in this experiment. This analysis’ results are shown in Table 2.

Table 2: Samples’ characteristics.

Characteristic Intervention Control Measure Result
Genre F=137; M=234 F=113; M=249 χ2 2.4117
Age 13 (11-17) 13 (11-16) U test 68433
Gamer N=180;Y=191 N=188;Y=174 χ2 0.72413
Playing time 5 (2-14) 4 (1.25-14.75) U test 67300
* = p < 0.05; M = male; F = female; Y = yes; N = not

Table 2 demonstrates both the characteristics of this experiment’s samples
and the results of comparing their data. Represented as median(1st quartile-
3rd quartile) within the table, numeric data refers to participants’ current age
and to how many hours they weekly play (playing time), considering any game
and any device. For these, the Shapiro-Wilk normality test provided significant
evidence they do not follow a normal distribution (p < 0.05). Consequently,
we compared groups’ median through the Mann-Whitney U test (U test here-
after). Differently, the table represents categorical data (i.e. genre and gamer)
according to their classes’ distribution. This data type was compared through
the Chi-Squared homogeneity test (χ2). For numeric data, the null hypotheses
were that groups’ medians do not differ; whereas the null hypotheses for cate-
gorical data were that groups’ distributions are the same. As can be seen on
the table, no significant difference (p < 0.05) was found on all tests. Hence,
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demonstrating that the threat of comparing the behavior of samples with differ-
ent characteristics is not present in terms of players’ demographics and gaming
habits.

5.2. Behavior Measures

To evaluate participants beyond those characteristics, this experiment used
three metrics to measure players’ in-game behavior: number of played levels,
time played in seconds, and number of retained players.

Total time played has been used on previous studies as a metric of players’
engagement [37, 38, 39]. In this research, we analyzed it based on the total
amount of time that the game was played in seconds. The number of played
levels was used in the study of Butler et al. [28] as an additional metric to assess
players’ in-game behavior. This was adopted in this paper’s experiment, in the
same way, considering how many levels participants played at all. Additionally,
this experiment analyzed players in terms of how many of them were retained in
each version. Although retention does not have a definition that is universally
accepted [40, 41], a number of attempts exist, as discussed in Viljanen et al. [42].
Nacke and Drachen [43] defines it as the game’s ability to keep users playing the
game. Weber et al. [44] claim it is a measure of player experience that refers to
players’ complete gameplay history in terms of how long one continues to play
the game. These authors measured retention as both the number of football
games played (similar to out levels played metric) and as the number of sessions
a played initiated [44, 45]. Harrison and Roberts [46] argue that, despite the
many definitions, it often refers to the percentage of players that still play the
game after some period of time. In addition, some authors also define distinct
types of retention. Harrison and Roberts [46] also defines session-level retention,
the percentage of players that complete a single game session. Another case
is the differentiation between short- and long-term retention, which refers to
continue playing the same session and quitting the game or leaving it for an
extended period, respectively [47]. Also, there are the aggregate and individual
retention, which refer to measurements that consider the entire player base and
those applied to a player in specific, respectively [44].

Considering the aforementioned context, the retention measure adopted in
this paper was inspired by a combination of definitions and types present in
the literature. In the scope of this article, this metric measures the number
of participants that played at least a specific number of levels, considering as
threshold the median of total played levels based on both Intervention and
Control groups’ players together. Hence, a retained participant played more
than half of all participants. Thereby, this is a type of aggregate retention
because it considers the entire player base [44], it is session independent [46], and
might reflect both short- and long- term retention [47]. Additionally, it is based
on the number of played levels [45], capturing players’ commitment towards the
game [48] in terms of those who continued playing after achieving the average
number of levels [43]. We highlight that this is relevant in the context of this
study because the more levels users play, the more they practice math. Note that
we selected this average-based threshold because the SpaceMath does not have
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an end, therefore, it is impossible to evaluate players’ retention in terms of those
who finished playing (c.f. [43, 46]). Therefore, in summary, this experiment
analyzed players considering two numeric metrics and one categorical measure,
concerning their behavior from the perspectives of engagement and retainment.

5.3. Procedure

Participants were reached through two interventions. One was to disclose
the research via e-mail. The other was to contact colleagues teachers. On the
latter case, four colleagues agreed to perform the research on institutions they
teach. In both cases, participants were informed they would be participating in
a research before the procedure started. Hence, all subjects agreed to participate
in the experiment, regardless of being reached via e-mail or in their institutions
through their teachers.

The procedure itself consisted of three steps: (i) description, (ii) registering,
and (iii) playing. The first step’s goal was to introduce the research and the
testbed game to participants. For those reached via e-mail, its corpus had the
description of this procedure. Differently, colleague teachers who ran the experi-
ment with their students on their institutions’ classes performed the procedure’s
first step. On the second step, the goal was to capture players demographics
in order to enable comparing characteristics of players from different groups.
This is important because having groups with different characteristics inserts a
threat to the study’s validity. Hence, registering into the testbed game before
playing it was a requirement for all players, regardless of how they were reached.
Lastly, players’ behavior was captured on the third step, when they finally got
to play the game. Their behavior was constantly captured in terms of in-game
metrics (e.g. number of played levels). Also, they were able to play as much
as they wanted because the game is available for free access online. Therefore,
even participants not reached via e-mail could play it after the institutional
activity. In sum, this procedure captured participants’ in-game behavior after
they were introduced to both the research and the testbed game and provided
their demographic data.

6. Data Analysis and Results

Firstly, numeric behavioral data (i.e. number of played levels and time
played) were analyzed through the Shapiro-Wilk test. These tests considered
an alpha level of 0.05 to reject the null hypothesis. Hence, p-values less than
or equal to 0.05 suggest that data are unlikely to follow a normal distribution,
similar to the analysis presented in Section 5.1. Table 3 shows all tests’ results
for both Intervention and Control groups in terms of numeric behavioral data
normality.

Table 3 demonstrates that all p-values are less than the alpha value. There-
fore, all normality tests provided sufficient evidence to reject the hypothesis that
some of these metrics follows a normal distribution. Thus, numeric measures of
players’ behavior were compared based on the non-parametric U test. This test
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Table 3: Normality tests of numeric behavioral metrics.

Intervention Control
Measure W P-value W P-value
Number of played levels 0.676 < 0.001 0.764 < 0.001
Time played in seconds 0.664 < 0.001 0.770 < 0.001
W = Shapiro-Wilk statistic

compares two samples’ medians. They significantly differ if the test provides
sufficient evidence to reject its null hypothesis. This is, a p-value less than or
equal to the selected alpha level, which is 0.05 for the following analyses as well.
Therefore, U tests resulting in p-values less than or equal to 0.05 indicate a sig-
nificant difference in the behavior of players from different groups according to
numeric measures. Consequently, suggesting that PLG impacted participants’
behavior in terms of levels and time played. Table 4 presents statistics of these
metrics for both groups.

Table 4: Statistics of players’ numeric measures of in-game behavior.

Intervention Control
Measure Mdn IQR Mdn IQR
Number of played levels 39 19-75.5 33.5 17-68
Time played in seconds 998 515-1914 1000.5 505.5-1792.2

As can be seen in Table 4, Intervention and Control groups played a median
of 39 and 33.5 levels, respectively. It also demonstrates that most participants
from the Intervention group played between 19 and 75.5 levels, while most
participants from the Control group played between 17 and 68 levels. Thus,
showing that the Intervention group played more levels than the Control group.
However, the difference between groups in terms of this behavioral metric is
statistically insignificant according to the U test (U = 62480, p = 0.1031).
Moreover, Table 4 shows that Intervention and Control groups played a median
of 16.63 and 16.68 minutes, respectively. In addition, it demonstrates that most
participants from the Intervention group played between 8.58 and 31.90 minutes,
while most participants from the Control group played between 8.43 and 29.87
minutes. Thereby, demonstrating that the Control group played slightly more
than the Intervention group in terms of played seconds. Yet, this difference
is statistically insignificant as well, according to the U test (U = 65617, p =
0.5926). Therefore, we can conclude that there is no evidence to support the
claim that the behavior of players from distinct groups differed in terms of
numeric behavioral measures.

Furthermore, players’ behavior was also analyzed in terms of how many of
them were retained. This metric’s threshold was the median value of played
levels from both samples together, i.e. 36 levels. Therefore, participants that
played more than this threshold were considered retained. Otherwise, they were
considered non-retained. This measure was compared based on the distribution
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of players (i.e. retained or non-retained) on each version through the Chi-
Squared homogeneity test. It analyzed the homogeneity of groups based on
the null hypothesis that their distributions are the same. Hence, rejecting the
null hypothesis provide significant evidence they differed. This test used the
same alpha level than previous tests. Thereby, a p-value less than or equal to
0.05 suggests that retained players’ distribution differ between the two samples.
Table 5 displays the number of retained and non-retained players from each
group.

Table 5: Distribution of players in terms of retainment

Group Retained Non-retained
Intervention 193 (0.52) 178 (0.48)
Control 145 (0.40) 217 (0.60)

The number of players retained and non-retained for both Intervention and
Control groups are shown in Table 5. Also, it showcases the proportion they
represent within each sample. As can be seen, over than half of the players from
the Intervention group were retained, whilst 60% of players from the Control
group were non-retained. Hence, showing that players from the Intervention
group were more retained than players from the Control group. Additionally,
through the homogeneity test, we found statistical evidence that the difference
in groups’ retainment distribution is highly significant (χ2=10.082, df = 1, p
= 0.001497). Thereby, we can conclude that the distribution of participants
who only played on the procedurally generated levels is significantly different
from those who began playing on the human-generated levels according to the
retainment metric.

7. Discussion

Overall, on one hand, the experiment’s findings showcased that players’ be-
havior did not significantly differ in terms of engagement-related metrics (i.e.
number of played levels and seconds). Therefore, demonstrating that PLG had
no impact on these behavioral metrics. On the other hand, the number of re-
tained players from the Intervention group was significantly different from the
number of retained players from the Control group. In this case, presenting em-
pirical evidence that the game version using PLG retained players better than
the version using human-designed levels. Hereby, while the number of played
levels and seconds suffered no significant impact by the use of a PCG algorithm,
a highly significant impact became evident when assessing players’ retainment.
Thus, rejecting the experiment’s hypothesis and yielding empirical evidence that
groups behaved differently in one of the analyzed metrics.

These findings corroborate with the literature by showing that further re-
searches are needed to establish the impacts of PCG on players. Butler et al.
[28] found that their approach had a small impact on the number of played
levels, which can be considered negative since the game’s original version was
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played more. Connor et al. [17] also achieved results that might be considered
negative. Players’ immersion was small for the ones that played on procedu-
rally generated levels in comparison to players from the human-designed levels,
in their research. However, Korn et al. [18] demonstrated that players consid-
ered the human-created reefs less realistic and preferred in comparison to the
procedurally created. Hence, yielding positive results for the algorithmically
generated contents. We argue that this paper’s results fit in a middle-term,
wherein a positive impact was found in one metric, whilst no impact was found
on the other two. Thereby, the literature presents some contradictions in terms
of what are the impacts of PCG on players. Therefore, demonstrating the need
for more researches to ground this understanding.

Nonetheless, both game development and player experience communities can
benefit from this article’s findings. Based on them, researchers can gain insights
into how players’ interactions with human-generated levels differ from interac-
tions with procedurally generated levels, according to their in-game behavior
in a DMG. Game developers and designers can incorporate PLG algorithms
into their projects to improve the development process being aware that, even
though they use a simplistic PCG method, it is unlikely that it will have a neg-
ative effect on players’ in-game behavior. Additionally, based on this research’s
findings, it is likely that players will be more retained by the game than if they
had to interact with a predefined amount of human-created content. In this lat-
ter case, unavoidably, they would end up having to play the same levels again.
In contrast, using PLG allows the game to constantly provide players with new
and unseen contents. Consequently, we argue that presenting not-repeated con-
tents was one factor for the Intervention group’s players being more retained
than Control group’s players, despite the simplicity of the generation algorithm.
Therefore, based on this paper’s findings, our argument is that people can take
advantage of PLG’s contributions for development time, without negatively in-
fluencing players, at the same time its benefits will probably be reflected on
players’ experience as well.

In spite of that, a key limitation of this research is one of the testbed game’s
main feature. Comparing the behavior of players that interacted with a single
game version is difficult given the endless gameplay feature. Once there is a lim-
ited set of human-designed levels, it might be necessary to transfer players from
the static version to the dynamic version in some cases. This change was nec-
essary when players achieved a 20-wins-streak. Otherwise, they would whether
have to stop playing or going back to the first level despite the win, and both
cases would violate the game’s rules. Hence, it was unavoidable the presence
of participants that started playing on human-created levels and then played
on algorithmically generated ones. Nevertheless, to maintain the experiment’s
measures consistent, data (levels and time played) from players that started
playing on the static version always counted to the Control group for the sake
of data analysis. That is, regardless of being transferred from one version to an-
other, players belonging to the Control group never changed to the Intervention
group. Therefore, maintaining all metrics consistent.

However, that limitation represents a threat to the experiment’s construct
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validity [49]. For instance, it could be mitigated if the analysis were focused on
players’ opinions. They could be captured after playing a predefined number of
levels that is equal to the number of human-created levels. Thereby, guarantee-
ing that no players would have to be changed from static to dynamic version
before providing their opinions. Nonetheless, this approach is not available in
order to assess players’ behavior. Therefore, in order to tackle the gap of evaluat-
ing in-game behavior left from recent studies, this paper’s experiment analyzed
whether the behavior of participants who started playing on human-designed
content and then, possibly, also played on procedurally generated levels, differed
from the behavior of participants that only played on automatically generated
levels. Hereby, we argue that the possible design threats are small as we man-
aged to explore a research question that considers this limitation.

Another possible limitation of this study is the static game version promoting
repeated levels. While players might have to play the same level again if they
lose before reaching a 20-wins-streak in the aforementioned version, a new level
is generated each time a player wins or looses in the dynamic version. This
fact might be seen as a limitation because whereas players from one version are
forced to replay the same content, players from the other are unlikely to do so,
although it is possible that the same level is generated twice (or more). We
argue that this not a limitation, though. It is common for games that do not
use some PCG algorithm to operate in this way: Once you lost and have to
restart, the same content is available. Consequently, it is valuable for research
purposes that the control intervention (i.e. playing the static version) provides
this feature. Hence, the research setup is approximated to realism. Thereby,
mitigating threats the experiment’s external validity [49]. Thus, increasing the
chances that the experiment’s results will be generalized to industrial practice.
Additionally, we highlight that playing the same level more than once did not
affect the number of played levels metric neither the retained players metric.
Although, e.g. losing at the second level twice means levels one and two were
played twice, the log system stores that this player played four levels (i.e. first
and second, then, first and second again). Therefore, computing the number of
played levels rather than the number of distinct levels played.

Moreover, there are other threats that might have affected this study’s va-
lidity. Mainly, they are threats that concern the experiment involving humans.
From one perspective, there are the manually generated levels, which might
be of poor quality and end up biasing the results. This threat was mitigated
by selecting an experienced developer which is a specialist in the field. An-
other concern is that data from Table 4 suggest that players from the Control
group spend more time per level (30 seconds) than those of the Intervention
group (26 seconds), indicating that the former group faced more difficult than
the latter. On the one hand, one might argue that this performance difference
appeared because players from one group are more skilled than those of the
other. However, data from Table 2 indicates participants do not differ in terms
of both playing time and being gamers. In spite of that, some players might
be more skilled in the specific genre of the testbed game and, therefore, this
might be the reason for the performance difference. On the other hand, the
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cause might be the procedurally generated levels which, possibly, were easier
to play and, consequently, led players to yield better performances. The latter
case would evidence that PCG led to higher retention, while the former would
indicate that players themselves were the cause. Nevertheless, further research
is required to confirm or reject those hypotheses. From another perspective,
participants might have behaved within the game differently than they would
if they were not aware they were participating in a research. The approach
to mitigate this threat was not to inform what was under analysis (i.e. PCG
versus human-generation) and neither that in-game behavior was the evaluation
metric. Despite that, they were aware their in-game data would be collected
and no personal information would be disclosed. Additionally, it was sought to
mitigate threats to conclusion validity through the use of robust, well known
statistical tests and a substantially large sample, based on previously related
researches. Therefore, although the existence of some threats to the validity of
this paper’s experiment, we argue they are insufficient to invalidate its findings.

8. Final Considerations

Few researches have tackled the impact of PCG use on games, especially
on the ones with educational ends, although it is a reliable approach to im-
prove them. This article addressed this gap, presenting the analysis of PLG’s
impact on players’ behavior based on their interactions with a DMG. Players’
behavior in two versions of this game were compared, wherein the only differ-
ence was one version featuring human-generated levels and the other providing
procedurally generated levels. Hence, to identify whether playing only on algo-
rithmically generated levels impacts players, compared to starting playing on
human-designed levels, three behavioral measures were assessed through em-
pirical analyses: number of played levels, time played in seconds, and number
of players that played more than half of all experiment’s participants (retained
players).

The experiment’s results showed insignificant differences in two out of the
three measures. The number of retained players was the single metric that pre-
sented a significant difference, wherein the ones who only interacted with the
automatically generated levels were more retained than the remaining players.
Thereby, demonstrating that PCG impacted players behavior in terms of the
number of retained players, but had no impact on time played and number of
played levels. These findings mainly contribute to designers and developers,
providing them with empirical evidence that using PLG algorithms to create
levels of similar games is likely to have no negative impact on players’ behavior.
Instead, it can lead them to be more retained than when they start to play
on human-created levels and have to face repeated contents. Nonetheless, this
analysis’ perspective is recent and, given the contradictory results of similar
researches, further studies are required in order to ground the understanding
of PCG’s impact on players. Furthermore, consider only in-game metrics is a
scope limitation that, if mitigated (e.g. using those in combination to play-
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ers’ opinions), would strengthen this study’s contributions by allowing a more
reliable interpretation of our findings.

Consequently, as the main directions of further researches, we recommend
performing similar experiments on different game’s genre, using different algo-
rithms as well as sets of evaluation metrics. Adopting other games as testbed can
demonstrate whether PCG impacts players differently on them. Similarly, ad-
vanced algorithms of content generation might showcase more advantages over
human-designed contents, considering that the simple constructive algorithm
used in this paper’s experiment already demonstrated to be of value. Evaluat-
ing these impacts from different perspectives is interesting as well. While PCG
impacted a behavioral metric but did not on others, it might be found that it
impacts players differently in terms of their opinions or physiological reactions.
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