
A recommender system based on effort: towards
minimising negative affects and maximising

achievement in CS1 learning

Filipe D. Pereira1, Hermino B. F. Junior1, Luiz Rodrigues4, Armando Toda4,
Elaine H. T. Oliveira2, Alexandra I. Cristea3, David B. F. Oliveira2, Leandro

S. G. Carvalho2, Samuel C. Fonseca2, Ahmed Alamri3, and Seiji Isotani4

1 Department of Computer Science, Federal University of Roraima, Boa Vista, Brazil
filipe.dwan@ufrr.br

2 Institute of Computing, Federal University of Amazonas, Manaus, Brazil
3 Department of Computer Science, Durham University, Durham, United Kingdom

4 ICMC, University of Sao Paulo, Sao Carlos, Brazil

Abstract. Programming online judges (POJs) are autograders that have
been increasingly used in introductory programming courses (also known
as CS1) since these systems provide instantaneous and accurate feedback
for learners’ codes solutions and reduce instructors’ workload in evaluat-
ing the assignments. Nonetheless, learners typically struggle to find prob-
lems in POJs that are adequate for their programming skills. A potential
reason is that POJs present problems with varied categories and difficulty
levels, which may cause a cognitive overload, due to the large amount of
information (and choice) presented to the student. Thus, students can
often feel less capable, which may result in undesirable affective states,
such as frustration and demotivation, decreasing their performance and
potentially leading to increasing dropout rates. Recently, new research
emerged on systems to recommend problems in POJs; however, the data
collection for these approaches was not fine-grained; importantly, they
did not take into consideration the students’ previous effort and achieve-
ment. Thus, this study proposes for the first time a prescriptive analyt-
ics solution for students’ programming behaviour by constructing and
evaluating an automatic recommender module based on students’ effort,
to personalise the problems presented to the learner in POJs. The aim
is to improve the learners achievement, whilst minimising negative af-
fective states in CS1 courses. Results in a within-subject double-blind
controlled experiment showed that our method significantly improved
positive affective states, whilst minimising the negatives ones. Moreover,
our recommender significantly increased students’ achievement (correct
solutions) and reduced dropout and failure in problem-solving.

Keywords: online judge, data-driven analysis, recommender system

1 Introduction

Programming Online Judges (POJs) are automatic code correction environ-
ments that are typically used by students to improve their programming skills
and/or train for programming competitions [41, 46, 26, 40, 47]. The adoption of
these environments by instructors and institutions has increased in the last few
years in introductory computing (so-called ’CS1’) classes [41, 36]. Typically, in



2 F.D. Pereira et al.

educational scenarios, students code in an integrated development environment
(IDE) tied to a POJ [7, 36]. Students then design their algorithms in the IDE and
submit them to be evaluated by the POJ system, which provides them real-time
feedback based on a case test analysis [41, 44, 7, 39, 34].

Alongside the growing popularity of POJs, data within theses systems are
gaining attention [13, 6, 41, 46, 33, 14, 7, 28, 29, 39, 32, 31]. Despite the notorious
benefits of POJs in education, these systems are not able to recommend the ap-
propriate problems for the students, which may impact on affective perception,
leading, over time, to affective states such as frustration [38, 45, 44, 8, 24]. Frus-
tration has been shown to be directly related to the amount of effort a student
needs to spend to solve a problem and may even lead to dropout [38, 25, 22, 1,
30]. This happens due to effort being intrinsically related to the students’ con-
fidence, competence and consequently affecting their motivation [19]. According
to [5], the learners’ effort can be measured by the amount of energy and time
they expend to meet the academic requirements. [19] explain it is necessary to
measure effort to assess students’ motivation and satisfaction. Moreover, a good
balance of effort required to solve tasks is related to increased achievement [12].

To adapt the programming problems to the students’ effort, Recommender
Systems (RS) appear as a viable solution [39]. RS are environments used to
identify and provide content based on rules designed from user data. These
systems have been widely used in educational scenarios [44, 2, 39]; however, few
studies have tackled ways to provide recommendations based on a deep analysis
of user behaviours. Specifically in the scope of programming learning, there are
only a few studies available in the literature proposing methods to recommend
problems in POJs, and such studies typically make the recommendations only
based on students’ attempts and results from the submissions to the POJ [44,
39]. Notice that a deep behavioural analysis of fine grained data is crucial to
make appropriate recommendations [20].

As such, in this work, besides the variables previously used in the literature
(attempts and results from submissions), we also track how students solve prob-
lems in the embedded IDE of a POJ and construct a holistic set of fine-grained
features to represent the effort expected to solve a given problem. Using these
features, we make a recommendation based on the following hypothesis: if a stu-
dent s solves a given problem p (which we call a target problem), our method
recommends a problem p’ that requires an effort to be solved similar to that of p,
assuming the student s would be able to solve the problem p’. Through explor-
ing this hypothesis, we believe that the recommendations will minimise students’
negative affective states, whilst maximising the positive ones, as the problems
recommended will not require a disproportionate effort from the learners. In
addition, as aforementioned, effort has been related to students’ achievement
in other fields beyond POJ [12, 34]. Hence, our second hypothesis is that our
recommendation based on expected effort will increase the student achievement
and decrease dropout and failure rate in problem-solving. Thus, this work aims
at solving the following research question: Does personalised recommendation
based on effort influence the students’ affect and achievement in online judges?

2 Related Work
Programming is learned by doing, that is, students need to solve many prob-

lems to improve their skills and a POJ is a suitable tool for practising [41, 34].



A recommender system based on programming learners’ effort 3

However, given the huge amount of problems available in this system, frustration,
confusion and other negative affective states might be triggered when learners
are searching for problems or solving inadequate questions [39, 44]. Thus, in this
section, we analyse studies that propose methods for the automatic recommen-
dation of problems or pedagogical material in automatic assessment systems.

In this sense, [9] conducted a study mapping code submitted by a group of
students to create a code profile that provided personalised instructions, which
was based on previous recommendations made by humans. Through these in-
structions, the authors suggested that it was possible to reduce difficulties faced
by students. They used a multi-label k-nearest neighbour technique to recom-
mend a topic of programming for the student. For instance, after solving a given
problem using the “if-then-else” structure, the recommender could suggest prob-
lems using “loops”. However, this recommender presents a generic list of prob-
lems based on the topic. In this sense, students were still responsible for finding
problems that they thought were closest to their programming skills. Here, us-
ing our hypothesis, our novel behavioural-based model recommends directly the
problem to the student, not the programming topic. Moreover, POJ questions
are typically not annotated with the topic and, hence, a human endeavour would
be needed to apply manual annotations of topics [15].

Following, [17, 8] proposed to extract information from codes to choose the
suggestions for students learning programming. [17] created an RS that provided
hints during the solving process, using techniques such as term frequency–inverse
document frequency to represent similarities. [8] created an RS that suggested
learning materials to help teachers in designing courses. Different from [17] and
[8] who focused on tips about learning materials, we used data-driven behaviour
analysis to infer the knowledge and effort of the students based on the data logs
generated through real-time execution.

[44] and [39] used learner behavioural data for automatic recommendation
of problems in POJs. [44] proposed an RS that recommends problems based on
a collaborative approach. They used a binary matrix as a basis for the recom-
mender. [39] proposed a learning path recommendation system based on learner’s
submission history in an online judge. However, these authors [44, 39] considered
only the number of attempts and results from the submissions as features. In
this work, we extend the features that were used in previous works and others
that were extracted from the codes submitted and fine-grained log data, includ-
ing self-devised features. Moreover, different from all of them, we evaluated our
method with real learners and checked their affective states and achievement
rates when solving the problems.

In brief, none of the previous studies performed an analysis of effort consider-
ing such fine-grained set of features to design a behavioural recommender model,
as a way to personalise the recommendations in POJs. Moreover, for the first
time, to the best of our knowledge, our RS provides problems adapted to the
students’ skills, and we measured the resulting achievement rate and affective
states when solving our recommended problems.

3 Materials and Methods

In this section, we present the methods and tools used in this study, describe
the data collection process, feature extraction and architecture of the RS, as well



4 F.D. Pereira et al.

as the evaluation method for this study. Following, we present the instrument
and data collection process:

– Instrument: We used a POJ called CodeBench5, a home-made POJ sys-
tem designed by the Institute of Computing team from Federal University of
Amazonas, Brazil. Codebench allows teachers, instructors and lecturers to
provide assignments for students to develop their programming skills. More-
over, students can perform self-direct learning. Once an answer for the prob-
lem is submitted, the system provides a real-time feedback. This system also
includes an online IDE, where students can write and execute their codes.
Some other features are management of classes, social interactions between
students and lecturers, and learning materials sharing. All these character-
istics are common in other POJs such as URI online judge [4], UVA online
judge [37], and others.

– Data collection: We collected data from CS1 courses that were offered
during 6 semesters (from 2016 to 2018). Students had to solve seven sets of
exercises using Python. Each set of exercises is related to one of the following
topics: (1) variables; (2) conditionals; (3) nested conditionals; (4) while loops;
(5) vectors; (6) for loops; and (7) matrices. Furthermore, learners could solve
other problems as wanted (self-direct learning). All the students solved the
problems using the IDE provided in the POJ CodeBench. We collected data
from 2,058 students that generated 535,619 code submissions to solve these
exercises. Students’ keystrokes were recorded in their logs on the server side.
These log files are the sources of our extracted fine-grained features related
to the students’ behaviour to be used as input into our data-driven approach.
With the data from the student’s logs, we will represent the expected effort
for the student to solve the programming problems.

3.1 Behaviour-based Recommender System based on effort

Students’ effort is the amount of energy and time learners expend to meet the
academic requirements [5]. In this work, we represent the student effort expected
to solve a given problem as the aggregation of students’ procedural and intel-
lectual effort [5] combined with consolidated code metrics [27]. The procedural
effort is related to how students succeeded (e.g. proportion of solved questions)
in the assignment and the intellectual effort is related to how much energy the
students used to solve the problems (e.g. number of attempts, time spent). The
code metrics (e.g. number of loops) come from the software engineering field and
are used to measure the learners’ effort in building their code solutions.

Notice that effort is a psychological construct and, therefore, there is no
standard way to measure it. In other words, there is no standardised scale that
will measure how students efforts are used to solve problems [16]. In these cases,
there is a need of features that may be used to indirectly measure one’s effort.
In addition, we need to define some observable, recordable measures that reflect
the construct, called the operational definition of the construct. As such, we
have established an operational definition to compute the expected effort to
solve a given problem, using features that have already proved to be efficient
in the literature [18, 42, 27, 44, 34, 7] and code metrics established in software
engineering to measure the effort of programmers in the development process.

5 codebench.icomp.ufam.edu.br



A recommender system based on programming learners’ effort 5

We extracted these features from the students’ logs and codes and further
processed them, e.g., extracting the average number of students’ attempts for
each problem, average number of lines of codes for each problem, etc. Thus, our
observable, recordable measure to represent the effort is represented via the fol-
lowing features: noAttempts - proportion of users who didn’t try to solve a given
programming problem [43, 34]; unsucNoRes - proportion of users who failed to
solve a given programming problem with a few attempts [43, 34]; unsucRes -
proportion of users who tried hard, but failed to solve the problem [43, 34]; suc-
NoRes - proportion of users who solved the problem with a few attempts [43,
34]; sucRes - proportion of users who tried hard and managed to solve a given
problem [34]; attempts - average of students’ attempts to solve a given problem;
IDEUsage - average resolution time of student on the Online IDE to solve a given
problem [13, 34]; contCicle - average number of loops from submitted students’
codes for a given problem [27]; contCondition - average number of conditional
structures from submitted students’ codes for a given problem [27]; cyclomat-
icComplexity - average cyclomatic Complexity from submitted students’ codes
for a given problem, where cyclomatic Complexity represent the source code as
a control flow graph, corresponding to the number of independent paths of this
graph [27]; events - average log lines of problems solved [34]; nDistinctOperands
- average distinct arithmetic operands in the source codes; nDistinctOperators -
average distinct arithmetic operators in the source codes; quotientError - average
of repeated mistakes made by the students [18]; quotientWatson - attribution
average penalties for mistakes made in a short period of time [42]; sloc - average
lines of code sent in the online code edit [27]; sucessAverage - average problem
submissions assessed as correct [13]; test - average number of times the stu-
dent tested the source code [13]; totalOperands - average operands in the source
codes; totalOperators - average operators present in the source codes; variables
- average number of of variables in the source code [34].

We use such a large set of features to measure effort following [5], who ex-
plains that effort should be measured by a wide range of variables and expecta-
tions. Using this set of features forms the input data-driven behaviour for our
Behaviour-based Recommender System (BRS) based on students’ effort. The
similarity between the recommended problem and the target problem is com-
puted through nearest neighbour analysis, using cosine similarity as distance
metric. We use this technique to support our first hypothesis that considers that
a student s is able to solve a (recommended) problem p’ of a same or similar level
to a previously solved one p (target problem). As such, the nearest neighbour
analysis is playing the role of matching the target and recommended problem
by analysing the problems’ similarities.

4 Evaluation of the Recommender Model

4.1 Participants

For the evaluation of our BRS, we recruited students who had already done intro-
ductory programming, from the Federal University of Roraima (UFRR), Brazil,
due to convenience sampling, and since these students had already experience of
learning with POJs, and could much easier and faster understand the purpose
of the study. We have sent a message to computer science students from UFRR,
explaining our research goals, asking for volunteers to participate in a 10-minute



6 F.D. Pereira et al.

phone call, scheduling calls for all who replied. Before the evaluation, we have
explained the study to the learners and obtained their consent to participate. In
total, 15 students agreed to participate of the experiment.

4.2 Measures

For each recommended problem, we asked the participants to make a comment
about the effort required to solve the target problem and the recommended prob-
lem. Thus, we could evaluate manually the affective states within the comments
based on the most frequent affective states when solving problems [10], which
are boredom, confusion, engagement, neutral, and frustration. Besides that, in
our context it is also crucial to evaluate when the learner is satisfied with the rec-
ommendation. Therefore, we included happiness, as [11] explain that happiness
is a typical affective state presented when students are satisfied when solving
problems. In Table 1, we summarise and describe all affective states used in our
analysis.
Affective State Description

Boredom Uninterested in the current recommended problem.

Confusion Poor comprehension of the problem, attempts to resolve erroneous
belief.

Engagement Student motivated to solve the current problem recommended.

Neutral No visible affect, at a state of homeostasis.

Frustration Problem recommended was not as expected, that is, more difficult
or easier.

Happiness Satisfaction with the recommendation, feelings of pleasure about
the problem.

Table 1. Affective states used to evaluate learner’s comments

We further use a data-driven approach to evaluate the recommendations in
terms of achievement using the following metrics: i) achievement rate, which is
the proportion of correct submissions over all submissions; ii) failure rate, which
is the proportion of incorrect over all submissions; and iii) dropout rate, which
is the proportion of recommended problems that were not attempted by the
students over all problems. It is worth mentioning that students were free to
execute and submit solutions for the recommended problems as many times as
they wished, i.e., there was no limit of attempts set for recommended problems.

4.3 Experimental Manipulation

To evaluate the BRS itself (experimental treatment) we compared the person-
alised recommendation with a random recommender (control treatment). We
called the second one Random Recommender System (RRS) because the input
is known but not the output, which means that given a target problem, the RRS
recommends the next problem(s) by performing a random selection of questions
from pre-determined lists of problems selected by instructors. Instructors created
these lists for students on CS1 courses, so they are real-life recommendations.
The comparison between the BRS and RRS was conducted through a within-
subject double-blind controlled experiment, where neither students nor authors
knew which treatment (BRS or RRS) they were receiving.



A recommender system based on programming learners’ effort 7

Thus to conduct our experiment, we created two personalised lists of recom-
mendations using each recommender method (BRS and RRS). Each personalised
list comprises 8 problems, totalling 16 (2x8) problems per student, containing
12 recommendations and 4 target problems, totalling 180 recommendations (i.e.,
12x15) to be evaluated. Each student had their own personalised list split into 2
groups, with each group containing 4 problems. The first group was composed of
easy problems, whilst the second one of intermediate problems. The first ques-
tion of each group was a target problem (TP1 and TP2) that was selected by the
authors of this study in collaboration with lecturers and professors of program-
ming. These target problems act as a starting point to balance the RS towards
generating the recommendations, as a way to deal with the cold-start problem
[21]. After the target problems, we have sequenced 3 automatic recommenda-
tions based on each target problem. Thus, we constructed the personalised list
of recommended problems for the participants as follows: TP1 → R1, R2, R3 and
TP2 → R4, R5, R6.

Doubtlessly, target problems were not included as part of the recommenda-
tion. For the easy target problems, we chose sequential and conditional problems
(if...then...else), whereas for the intermediate problems we selected problems that
use repetition structures (loops), vectors, strings and matrices. To personalise
the recommendation for each student, we selected five different target problems
for TP1 and TP2. Moreover, we calculated the 10 nearest neighbours for each
target problem, so that we had 10 different recommendations for each target
problem. After that, we randomly assigned 3 out of the 10 nearest neighbours
of a given target problem to compose the above recommendations.

5 Results and Discussion

We performed a qualitative analysis of the students’ comments6 over the rec-
ommended problems to identify their affective states. To perform that analysis,
two authors independently classified each comment based on the affective states
presented in Table 1. Subsequently, we performed a Kappa Cohen Test to check
the agreement level and, as a result, we achieved 0.83, which is considered a
high level of agreement [3]. For the cases of disagreement, another author acted
as the third judge. Using this classification, Figure 1 (left) shows the affective
states present in the comments about the recommendations for each method.
Comparing the methods, we can see a clear difference in terms of happiness and
frustration (as affective measures - see Section 4.2). Indeed, the difference is sta-
tistically significant (p − value < 0.05, χ2 - even after Bonferroni correction),
which reveals that our method maximises the positive affective state (happiness,
related to satisfaction), whilst minimising frustration.

Analysing each affective state in isolation, we observe only few neutral com-
ments, which makes sense, since the students’ comments about the recommenda-
tions tend to be pragmatic, that is, they usually stated that they were satisfied
with the recommendation (happiness) or that the recommendations did not re-
quire the same effort as the target problems (frustration). Moreover, we can
observe that boredom and engagement were not assigned for any comment. A
possible reason is that the students may not have experienced an aversive state

6 www.dropbox.com/s/uxkvhohvuo1itmq/comments english.xlsx?dl=0



8 F.D. Pereira et al.

0 20 40 60
count

Confusion

Happiness

Frustration

Neutral

Af
fe

ct
iv

e 
St

at
es

Methods
BRS
RRS

Fig. 1. Affective states classified based on learners’ comments (left) and analysis of the
recommendations submitted to the POJ (right).

to the activity nor have felt sufficiently engaged as they treated the recommen-
dations as an experiment and not as an usual learning activity.

Another affective state that occurred with a relatively low frequency (N =
21) was confusion. In total, there were 11 cases of confusion in the RRS and 10
cases in the BRS, which reveals a balance in relation to this state. This affective
state occurred when students did not understand the problem statement, or the
way in which the outputs of their codes should be presented in order to pass,
for each test case. To illustrate, in some comments, students reported that their
codes were correct, but the POJ did not judge them right because, apparently,
the test cases were pointing out an error that they could not find. [41] state that
this phenomenon can happen, as test cases are analysed by comparing strings,
so if the student forgot a line break in a print command, then the problem
can be assessed as wrong, even with the logic being right. Nonetheless, notice
that this is a limitation of the way in which POJs assess exercises and not a
limitation of our recommender method. Similarly, a poorly designed question
(which can cause confusion) is out of the scope of our method. Still, these cases
of confusion may have slightly influenced the failure rate and dropout in both
methods. However, as there are almost the same number of confusion cases for
both methods, their influence potentially weighed equally.

For happiness, there are 28 cases in our baseline, whereas 60 in our method,
more than double. In addition, there were 47 cases of frustration in the RRS,
whilst 19 in our method. This is a first evidence that our method is mitigating
frustration, whilst maximising the students’ satisfaction (i.e. happiness), sup-
porting our first hypothesis that the recommendations will minimise students’
negative affective states, whilst maximising the positive ones, as the problems
recommended will not require a disproportionate effort from the learners.

After this qualitative analysis of the student affective states, we analysed
the achievement of learners when solving the recommended problems. Figure 1
(right) shows the results for each method in terms of three rates: achievement,
failure and dropout. When the students solved the problems recommended by
the BRS, 60% of their submissions were assessed as correct (achievement rate),
whereas using the RRS, the achievement rate was of only 25%. In terms of fail-
ure rate, only 14% of students’ solutions were not accepted within the BRS,
against 24% within the RRS. Indeed, these differences are statistically signifi-
cant (p − value < 0.05 - χ2test, even after Bonferroni correction). Thus, these
results indicate that for the RRS, the effort required to solve these problems is



A recommender system based on programming learners’ effort 9

much higher than that used for the target problems. Furthermore, this evidence
suggests the importance of recommending problems that are more appropriate
to the students’ efforts, so as not to lead them to a low achievement rate and,
hence, to frustration. Additionally, something worth noting is that for the RRS,
students had a high rate of untried problems (51% of dropout rate), whereas for
the BRS this was only 26%. These findings support our second hypothesis that
recommendation based on effort expected will increase the student achievement
and decrease dropout and failure rate.

About the difference in terms of dropout and failure rate, we can state that
this is another confirmation that the problems recommended by the RRS either
required more effort from learners or were more complex to the point where the
students did not even try to solve them. Such high dropout rate from the RRS is
a clear evidence of students’ frustration in trying to solve problems not adequate
to the effort expected, here, the one applied to the target problem. Other reasons
that may have led the student not to try may be either the lack of understanding
of the problem (confusion) or the lack of skills. Nonetheless, the target problems
for each method are, respectively, an easy and intermediate problem. As such,
if the RS works well, the first group of recommendations should comprise only
easy problems, and the second group of recommendations should contain only
intermediate problems. Consequently, the lack of skills to solve the problem
should not have been present, as all the students who solved the recommended
problems (via both methods) had already done introductory programming and
were able to solve easy and intermediate problems. So, what likely happened
was some bad recommendations in both systems, proportional to the students’
dropout rate and failure rate. Notice that BRS was statistically superior in terms
of achievement rate, failure rate and dropout rate, which likely means that the
recommendation of the BRS were more suitable to students effort.

6 Pedagogical Implications

In summary, it is worth noting that our BRS shows potential to support
programming classes for learners and for instructors who use POJs.

For the student, our recommender mitigates the burden of searching for prob-
lems that are adequate to their knowledge level and skills, capable of enabling
self-directed learning in POJs. Moreover, our results showed that students felt
less frustration and more happiness when completing assignments recommended
by the BRS. Mitigating and improving frustration and happiness, respectively, is
important to improve learning outcomes. Thus, this finding implies the usefulness
of our proposed recommendation approach shows its potential to enhance learn-
ing experiences in solving programming assignments. Additionally, our finding
about the students’ achievement implies the stringent need to provide adequate
recommendations for programming students to practice.

Finally, instructors typically need to create variations of programming as-
signments lists for different classes, in order to avoid plagiarism, for example.
Using our method, considering each problem in a list of exercises already cre-
ated by a instructor as a target problem. By generating N recommendations for
each of these problems, we can automatically compose N new lists of exercises
that require effort and knowledge similar to those required to solve the original.
Thus, the instructor’s workload to design new programming assignment lists is
significantly reduced.



10 F.D. Pereira et al.

7 Conclusions, Limitations and Future Works

The evidence we found in our qualitative analysis is aligned with the achieve-
ment rate analysis, supporting our hypotheses that, in general, new recommen-
dations require a similar level of effort to the target problem. Indeed, the higher
level of frustration in our baseline is potentially the driving factor that lead to
such a high dropout and failure rate in problem-solving, whereas the higher rate
of happiness might be related to the high achievement rate in our method. Thus,
supporting our second hypothesis that the affective states influences achieve-
ment, defined here in terms of lower failure and dropout and higher number of
problems solved.

Notice that human responses may be subject to bias [5], as it is difficult
to control human attitudes and behaviour, even in a controlled experiment.
Thus, the way we evaluated our recommendation method was designed to reduce
potential biases. That is, besides the comments analysis, we also evaluated the
students’ interaction with the POJ and the problem solving process. In future
works we envision to evaluate the effect of our methods for teaching and learning
introductory programming by employing our method in real CS1 classes.

Finally, effort required to solve a given problem depends on the previous
knowledge acquired by the learner about the topic of that problem. To illus-
trate, if the student already knew how to manipulate vectors using Python, it
is easier for them to code a vector sum, as the numpy module allows summing
up vectors as scalars. However, for a student who had no prior knowledge of
vector manipulation with numpy, the effort to learn would be greater. The way
effort was modelled in our BRS does not take into account this prior knowledge
that the student would have about the topic. Thus, a potential limitation of our
BRS is recommending a vector sum problem for a student who is learning how
to sum scalars. As a way to solve that problem, in future works we envision
to take into consideration topics of problems, and merge this study with other
work we have on the topic of automatic detection [35]. Additionally, according
to our first hypothesis, the problems recommended by our BRS tend to require
similar effort of the target problem. However, students would not progress if the
effort required to solve the next recommended problems does not increase. To
deal with this, we also intend to merge this study with our work about detecting
the difficult level of programming problems [23], so that we can create a mecha-
nism to progressively increase the effort required to solve problems when making
recommendations.

Acknowledgements

This research, carried out within the scope of the Samsung-UFAM Project
for Education and Research (SUPER), according to Article 48 of Decree nº
6.008/2006 (SUFRAMA), was partially funded by Samsung Electronics of Ama-
zonia Ltda., under the terms of Federal Law nº 8.387/1991, through agreements
001/2020 and 003/2019, signed with Federal University of Amazonas and FAEPI,
Brazil. This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001 and the
Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico - Brasil (CNPq
grant 308513/2020-7).



A recommender system based on programming learners’ effort 11

References

1. Alamri, A., Alshehri, M., Cristea, A., Pereira, F.D., Oliveira, E., Shi, L., Stewart,
C.: Predicting moocs dropout using only two easily obtainable features from the
first week’s activities. In: International Conference on Intelligent Tutoring Systems.
pp. 163–173. Springer (2019)

2. Aljohani, T., Pereira, F.D., Cristea, A.I., Oliveira, E.: Prediction of users’ profes-
sional profile in moocs only by utilising learners’ written texts. In: International
Conference on Intelligent Tutoring Systems. pp. 163–173. Springer (2020)

3. Artstein, R., Poesio, M.: Inter-coder agreement for computational linguistics. Ed-
ucational and Psychological Measurement 20(1):37-46 (2008)

4. Bez, J.L., Tonin, N.A., Rodegheri, P.R.: Uri online judge academic: A tool for
algorithms and programming classes. In: 2014 9th International Conference on
Computer Science & Education. pp. 149–152. IEEE (2014)

5. Carbonaro, W.: Tracking, students’ effort, and academic achievement. Sociology
of Education 78(1), 27–49 (2005)

6. Caro-Martinez, M., Jimenez-Diaz, G.: Similar users or similar items? comparing
similarity-based approaches for recommender systems in online judges. In: Inter-
national Conference on Case-Based Reasoning. pp. 92–107. Springer (2017)

7. Carter, A., Hundhausen, C., Olivares, D.: Leveraging the ide for learning analytics.
The Cambridge Handbook of Computing Education Research, Sally A. Fincher and
Anthony V. Robins (Eds.). Cambridge University Press, Cambridge pp. 679–706
(2019)

8. Chau, H., Barria-Pineda, J., Brusilovsky, P.: Content wizard: concept-based recom-
mender system for instructors of programming courses. In: Adjunct Publication of
the 25th Conference on User Modeling, Adaptation and Personalization. pp. 135–
140 (2017)

9. De Oliveira, M.G., Ciarelli, P.M., Oliveira, E.: Recommendation of programming
activities by multi-label classification for a formative assessment of students. Ex-
pert Systems with Applications 40(16), 6641–6651 (2013)

10. D’Mello, S., Calvo, R.A.: Beyond the basic emotions: what should affective com-
puting compute? In: CHI’13 extended abstracts on human factors in computing
systems, pp. 2287–2294 (2013)

11. D’Mello, S.K., Lehman, B., Person, N.: Monitoring affect states during effortful
problem solving activities. International Journal of Artificial Intelligence in Edu-
cation 20(4), 361–389 (2010)

12. Duckworth, A.L., Eichstaedt, J.C., Ungar, L.H.: The mechanics of human achieve-
ment. Social and Personality Psychology Compass 9(7), 359–369 (2015)

13. Dwan, F., Oliveira, E., Fernandes, D.: Predição de zona de aprendizagem de alunos
de introdução à programação em ambientes de correção automática de código.
In: Brazilian Symposium on Computers in Education (Simpósio Brasileiro de In-
formática na Educação-SBIE). vol. 28, p. 1507 (2017)

14. Fonseca, S., Oliveira, E., Pereira, F., Fernandes, D., de Carvalho, L.S.G.:
Adaptação de um método preditivo para inferir o desempenho de alunos de
programação. In: Brazilian Symposium on Computers in Education (Simpósio
Brasileiro de Informática na Educação-SBIE). vol. 30, p. 1651 (2019)

15. Fonseca, S.C., Pereira, F.D., Oliveira, E.H., Oliveira, D.B., Carvalho, L.S., Cristea,
A.I.: Automatic subject-based contextualisation of programming assignment lists.
EDM (2020)

16. Haden, P.: Descriptive statistics. The Cambridge Handbook of Computing Ed-
ucation Research, Sally A. Fincher and Anthony V. Robins (Eds.). Cambridge
University Press, Cambridge pp. 102–131 (2019)

17. Hosseini, R., Brusilovsky, P.: A study of concept-based similarity approaches for
recommending program examples. New Review of Hypermedia and Multimedia
23(3), 161–188 (2017)



12 F.D. Pereira et al.

18. Jadud, M.C.: Methods and tools for exploring novice compilation behaviour. In:
Proceedings of the second international workshop on Computing education re-
search. pp. 73–84. ACM (2006)

19. Keller, J.M.: Motivational design for learning and performance: The ARCS model
approach. Springer Science & Business Media (2009)

20. Kulkarni, P.V., Rai, S., Kale, R.: Recommender system in elearning: A survey. In:
Proceeding of International Conference on Computational Science and Applica-
tions. pp. 119–126. Springer (2020)

21. Lam, X.N., Vu, T., Le, T.D., Duong, A.D.: Addressing cold-start problem in recom-
mendation systems. In: Proceedings of the 2nd international conference on Ubiq-
uitous information management and communication. pp. 208–211 (2008)

22. Lee, D.M.C., Rodrigo, M.M.T., d Baker, R.S., Sugay, J.O., Coronel, A.: Exploring
the relationship between novice programmer confusion and achievement. In: Inter-
national conference on affective computing and intelligent interaction. pp. 175–184.
Springer (2011)

23. Lima, M., de Carvalho, L.S.G., de Oliveira, E.H.T., Oliveira, D.B.F., Pereira, F.D.:
Classificação de dificuldade de questões de programação com base em métricas de
código. In: Anais do XXXI Simpósio Brasileiro de Informática na Educação. pp.
1323–1332. SBC (2020)

24. Luxton-Reilly, A., Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott,
L., Paterson, J., Scott, M.J., Sheard, J., Szabo, C.: Introductory programming: a
systematic literature review. In: Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. pp.
55–106 (2018)

25. Ngai, G., Lau, W.W., Chan, S.C., Leong, H.v.: On the implementation of self-
assessment in an introductory programming course. ACM SIGCSE Bulletin 41(4),
85–89 (2010)

26. de Oliveira, J., Salem, F., de Oliveira, E.H.T., Oliveira, D.B.F., de Carvalho,
L.S.G., Pereira, F.D.: Os estudantes leem as mensagens de feedback estendido
exibidas em júızes online? In: Anais do XXXI Simpósio Brasileiro de Informática
na Educação. pp. 1723–1732. SBC (2020)

27. Otero, J., Junco, L., Suarez, R., Palacios, A., Couso, I., Sanchez, L.: Finding in-
formative code metrics under uncertainty for predicting the pass rate of online
courses. Information Sciences 373, 42–56 (2016)

28. Pereira, F.D., Oliveira, E.H., Fernandes, D., Cristea, A.: Early performance pre-
diction for cs1 course students using a combination of machine learning and an
evolutionary algorithm. In: 2019 IEEE 19th International Conference on Advanced
Learning Technologies (ICALT). vol. 2161, pp. 183–184. IEEE (2019)

29. Pereira, F., Oliveira, E., Fernandes, D., de Carvalho, L.S.G.C., Junior, H.:
Otimização e automação da predição precoce do desempenho de alunos que uti-
lizam júızes online: uma abordagem com algoritmo genético. In: Brazilian Sym-
posium on Computers in Education (Simpósio Brasileiro de Informática na Ed-
ucação-SBIE). vol. 30, p. 1451 (2019)

30. Pereira, F.D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri,
A., Alshehri, M.: Early dropout prediction for programming courses supported by
online judges. In: International Conference on Artificial Intelligence in Education.
pp. 67–72. Springer (2019)

31. Pereira, F.D., Toda, A., Oliveira, E.H., Cristea, A.I., Isotani, S., Laranjeira, D.,
Almeida, A., Mendonça, J.: Can we use gamification to predict students’ perfor-
mance? a case study supported by an online judge. In: International Conference
on Intelligent Tutoring Systems. pp. 259–269. Springer (2020)

32. Pereira, F.D., Fonseca, S.C., Oliveira, E.H., Oliveira, D.B., Cristea, A.I., Carvalho,
L.S.: Deep learning for early performance prediction of introductory programming



A recommender system based on programming learners’ effort 13

students: a comparative and explanatory study. Brazilian journal of computers in
education. 28, 723–749 (2020)

33. Pereira, F.D., Oliveira, E.H.T., Oliveira, D.F.B.: Uso de um método preditivo
para inferir a zona de aprendizagem de alunos de programação em um ambiente
de correção automática de código. Mestrado em informática, Universidade Federal
do Amazonas, Manaus (2018)

34. Pereira, F.D., Oliveira, E.H., Oliveira, D., Cristea, A.I., Carvalho, L., Fonseca,
S., Toda, A., Isotani, S.: Using learning analytics in the amazonas: understanding
students’ behaviour in cs1. British journal of educational technology. (2020)

35. Pereira, F.D., Pires, F., Fonseca, S.C., Oliveira, E.H.T., Carvalho, L.S.G.,
Oliveira, D.B.F., Cristea, A.I.: Towards a human-ai hybrid system for cate-
gorising programming problems. SIGCSE ’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3408877.3432422,
https://doi.org/10.1145/3408877.3432422

36. Pereira, F.D., de Souza, L.M., de Oliveira, E.H.T., de Oliveira, D.B.F., de Car-
valho, L.S.G.: Predição de desempenho em ambientes computacionais para turmas
de programação: um mapeamento sistemático da literatura. In: Anais do XXXI
Simpósio Brasileiro de Informática na Educação. pp. 1673–1682. SBC (2020)

37. Revilla, M.A., Manzoor, S., Liu, R.: Competitive learning in informatics: The uva
online judge experience. Olympiads in Informatics 2(10), 131–148 (2008)

38. Rodrigo, M.M.T., Baker, R.S.: Coarse-grained detection of student frustration in
an introductory programming course. In: Proceedings of the Fifth International
Workshop on Computing Education Research Workshop. p. 75–80. ICER ’09, As-
sociation for Computing Machinery, New York, NY, USA (2009)

39. Saito, T., Watanobe, Y.: Learning path recommendation system for programming
education based on neural networks. International Journal of Distance Education
Technologies (IJDET) 18(1), 36–64 (2020)

40. dos Santos, I.L., Oliveira, D.B.F., de Carvalho, L.S.G., Pereira, F.D., de Oliveira,
E.H.T.: Tempos de transição em estados de corretude e erro como indicadores
de desempenho em júızes online. In: Anais do XXXI Simpósio Brasileiro de In-
formática na Educação. pp. 1283–1292. SBC (2020)

41. Wasik, S., Antczak, M., Badura, J., Laskowski, A., Sternal, T.: A survey on online
judge systems and their applications. ACM Computing Surveys (CSUR) 51(1),
1–34 (2018)

42. Watson, C., Li, F.W., Godwin, J.L.: Predicting performance in an introductory
programming course by logging and analyzing student programming behavior. In:
2013 IEEE 13th international conference on advanced learning technologies. pp.
319–323. IEEE (2013)

43. Yera, R., Mart́ınez, L.: A recommendation approach for programming online judges
supported by data preprocessing techniques. Applied Intelligence 47(2), 277–290
(2017)

44. Yera Toledo, R., Caballero Mota, Y., Mart́ınez, L.: A recommender system for pro-
gramming online judges using fuzzy information modeling. In: Informatics. vol. 5,
p. 17. Multidisciplinary Digital Publishing Institute (2018)

45. Yu, R., Cai, Z., Du, X., He, M., Wang, Z., Yang, B., Chang, P.: The research of the
recommendation algorithm in online learning. International Journal of Multimedia
and Ubiquitous Engineering 10(4), 71–80 (2015)

46. Zhao, W.X., Zhang, W., He, Y., Xie, X., Wen, J.R.: Automatically learning topics
and difficulty levels of problems in online judge systems. ACM Transactions on
Information Systems (TOIS) 36(3), 27 (2018)

47. Zordan Filho, D.L., de Oliveira, E.H.T., de Carvalho, L.S.G., Pessoa, M., Pereira,
F.D., de Oliveira, D.B.F.: Uma análise orientada a dados para avaliar o impacto da
gamificação de um juiz on-line no desempenho de estudantes. In: Anais do XXXI
Simpósio Brasileiro de Informática na Educação. pp. 491–500. SBC (2020)


